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REAL CIRCLES TANGENT TO 3 CONICS

P. BREIDING - J. LINDBERG
W. J. G. ONG - L. SOMMER

In this paper we study circles tangent to conics. We show there are
generically 184 complex circles tangent to three conics in the plane and
we characterize the real discriminant of the corresponding polynomial
system. We give an explicit example of 3 conics with 136 real circles
tangent to them. We conjecture that 136 is the maximal number of real
circles. Furthermore, we implement a hill-climbing algorithm to find in-
stances of conics with many real circles, and we introduce a machine
learning model that, given three real conics, predicts the number of cir-
cles tangent to these three conics.

1. Introduction

Problems of tangency have been of interest since early geometry. Apollonius, in
the ‘Eπαφαί (Tangencies), asked the following question: Given three circles in
the plane, how many circles are tangent to all three? He showed that the answer
is 8 in general. In 1848 Steiner asked the related question of how many conics
are tangent to five generic conics. Steiner conjectured that there are 65 such
conics, meeting the Bézout bound of the corresponding polynomial system. In
1859 and 1864 Jonquières and then Chasles established the correct answer of
3264. In this paper we study a problem which sits in between:
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Figure 1: A red circle tangent to one blue hyperbola and two blue ellipses.

Question 1.1. Given three general conics Q1,Q2,Q3 ⊆ C2, how many circles
are tangent to all three conics?

Circles are defined by three numbers – the coordinates of the center and
the radius. Thus, we expect that the answer to our question is a finite number.
Indeed, Emiris and Tzoumas [13] showed that there are at most 184 circles
tangent to three general conics. We show in the next section that this bound is
attained for generic conics.

Next, we turn our attention to the real version of Question 1.1. By a real
conic we mean a conic whose defining equation has real coefficients. For three
real circles the 8 Appolonius circles are real circles. The real version of Steiner’s
problem was studied only recently. In [20] the authors prove that there exist
five real conics such that all 3264 conics tangent to them are real. In [6], the
authors use numerical algebraic geometry to explicitly find such an instance
and compute all 3264 real conics. Such arrangements are called fully real. In
the same spirit we pose the following question.

Question 1.2. Given three general real conics Q1,Q2,Q3 ⊆R2, how many real
circles are tangent to all three conics?

Here, we have the following result.

Theorem 1.3. There is an instance of three real conics Q1,Q2,Q3 ⊆ R2, such
that there are 136 real circles tangent to these three conics.
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Question 1.2 is much more subtle than Question 1.1. Of course, the answer
to Question 1.1 gives an upper bound to Question 1.2 but it is non-trivial to
verify whether or not that upper bound is tight. In fact, we are not able to
prove that 136 is the maximal number. In [20] the authors show that a fully real
instance of Steiner’ conic problem exist in a neighborhood of the degenerate
case where all five conics are double lines and each line intersects in the vertex
of a regular pentagon. If we make the same construction for our circle problem,
we find a maximum of 136 real tritangent circles, not 184. The reason is that
there are 4 real conics that are tangent to 2 lines and pass through 3 points,
but only 2 real circles that are tangent to 2 lines and pass through 1 point [2]
(circles are conics which pass through the two special circular points ◦+ := [1 :
i : 0],◦− := [1 : −i : 0] in P2

C; see Equation (2.3)). This discrepancy is the reason
why we get 136 instead of 184 real circles using the strategy from [20]. This
and computational evidence leads us to state the following conjecture.

Conjecture 1.4. The maximal number of real circles tangent to three conics is
136.

As a first step towards proving Conjecture 1.4 we give insight to Ques-
tion 1.2 by characterizing the real discriminant of our tangency problem.

In the last part of the paper we approach Question 1.2 computationally. In
Section 3 we implement a hill climbing algorithm, described in [10], to find
explicit conics that have many real tritangent circles. For instance, we use the
algorithm to find for every even number 0 ≤ n ≤ 136 an arrangement of conics
such they have exactly n real tritangent circles; see Theorem 3.1. In addition,
we introduce a machine learning model that, given three real conics Q1,Q2,Q3,
predicts the number of real circles tangent to these conics. We do this using
supervised learning on training data generated with the help of the hill climbing
algorithm.

Our code and all the data we generated is available on our MathRepo [14]
page

https://mathrepo.mis.mpg.de/circlesTangentConics

1.1. Outline of paper

In Section 2 we answer Question 1.1 by showing that for three general conics
there are 184 tritangent complex circles. We then classify the real discrimi-
nant of our tangency problem and show that there exists conics that have 136
real tritangent circles. Section 3 outlines the hill-climbing algorithm, while Sec-
tion 4 explores the application of machine learning to predicting the real solution
count.

 https://mathrepo.mis.mpg.de/circlesTangentConics
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2. Real and complex circles tangent to three general conics

We begin by outlining the problem formulation under consideration. We work
in an affine chart of P2

C that we identify with C2. Recall that a conic in the plane
is the set of (x,y) ∈ C2 satisfying the equation:

Q(x,y) = ax2 +bxy+ cy2 +dx+ ey+ f = 0 (2.1)

where a,b,c,d,e, f ∈ C and a circle of radius r centered at (s, t) ∈ C2 is given
by (x,y) ∈ C2 that satisfy:

C(x,y) = (x− s)2 +(y− t)2 − r2 = 0.

The conic and circle intersect in 4 points, counting multiplicity and including
points at infinity, so long as Q and C are irreducible and distinct. A point (x,y)∈
C2 satisfying the two equations Q(x,y) = C(x,y) = 0 is a point of tangency if
and only if it has multiplicity at least two, or equivalently that the determinant
of the Jacobian of Q and C vanishes:

det
(
[∇Q(x,y) ∇C(x,y)]

)
= 0.

Here, ∇Q(x.y) = ( ∂Q
∂x ,

∂Q
∂y )

T denotes the gradient of Q. We denote this as

∇Q(x,y)∧∇C(x,y) := det
(
[∇Q(x,y) ∇C(x,y)]

)
.

This allows us to rephrase the tritangent circles problem as the set of solutions
of a polynomial system. Let fix three conics

Q1(x,y) = a1x2 +a2xy+a3y2 +a4x+a5y+a6

Q2(x,y) = b1x2 +b2xy+b3y2 +b4x+b5y+b6

Q3(x,y) = c1x2 + c2xy+ c3y2 + c4x+ c5y+ c6
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Let (ui,vi) be the points of tangency on Qi (defined by f1, f2, f3). A circle C is
tangent to all three of Q1,Q2,Q3 if and only if the following conditions holds.
First, (ui,vi) ∈ Qi for 1 ≤ i ≤ 3. This is formulated by the following three
polynomials

f1 = a1u2
1 +a2u1v1 +a3v2

1 +a4u1 +a5v1 +a6

f2 = b1u2
2 +b2u2v2 +b3v2

2 +b4u2 +b5v2 +b6

f3 = c1u2
3 + c2u3v3 + c3v2

3 + c4u3 + c5v3 + c6

Moreover, (ui,vi) ∈C for 1 ≤ i ≤ 3. For this we have again three polynomials

f4 = (u1 − s)2 +(v1 − t)2 − r2

f5 = (u2 − s)2 +(v2 − t)2 − r2

f6 = (u3 − s)2 +(v3 − t)2 − r2

Finally, ∇Qi(ui,vi)∧∇C(ui,vi) = 0 for 1 ≤ i ≤ 3, which is given by

f7 = 2(u1 − s)(a2u1 +2a3v1 +a5)−2(v1 − t)(2a1u1 +a2v1 +a4)

f8 = 2(u2 − s)(b2u2 +2b3v2 +b5)−2(v2 − t)(2b1u2 +b2v2 +b4)

f9 = 2(u3 − s)(c2u3 +2c3v3 + c5)−2(v3 − t)(2c1u3 + c2v3 + c4)

These 3 types of constraints define a parametrized polynomial system of equa-
tions

F(x; p) = ( f1, . . . , f9)
T = 0 (2.2)

in the 9 variables x = (u1,v1,u2,v2,u3,v3,s, t,r) and 18 parameters given by
the coefficients of each conic p = (a1, . . . ,a6,b1, . . . ,c6). For a fixed set of pa-
rameters p defining three conics, a solution x ∈ C9 to the polynomial system
F(x; p) = 0 gives a circle with center (s, t) and radius r that are tangent to Q1,Q2
and Q3 at (u1,v1), . . . ,(u3,v3) respectively.

2.1. Complex circles tangent to three conics

We begin by answering Question 1.1. Observe that the Bézout bound of (2.2)
is 29 = 512 which is strict in this case, as [13] shows1 that there are at most
184 circles tangent to three conics. We show this bound is attained for generic
conics.

As in the case of Steiner’s problem, the excess solutions arise in part from
the locus of double lines. These double lines meet every conic at a point with

1The authors show that there are at most 184 circles tangent to three general ellipses. Since
the space of ellipses is an open set in the space of conics, this bound applies to conics as well.
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multiplicity two, and are hence counted as tangent, regardless if the underlying
reduced line is tangent or not.

Recall from Equation (2.1) that a conic is defined by 6 coefficients, so we
can represent a conic by a point in P5

C. The locus of double lines is then precisely
the image of the map from P2

C, the space of lines, to P5
C by

[a : b : c] 7→ [a2 : 2ab : b2 : ac : bc : c2].

This is the Veronese embedding, which we denote V . We can eliminate this
excess intersection by blowing up our space of conics along V . Denote X :=
BlV (P5

C) the blowup of P5
C along the Veronese surface V and π : BlV (P5

C)→ P5
C

the blowing down morphism. The algebraic variety X is called the space of
complete conics.

Fix a general point p ∈ P2, a general line ℓ ⊂ P2 and a general conic Q ⊂
P2. Let Hp,Hℓ,HQ be the hypersurfaces in P5

C corresponding to conics that
pass through p, are tangent to ℓ, or tangent to Q, respectively. We denote by
H̃p, H̃ℓ, H̃Q the classes of π−1(Hp),π

−1(Hℓ),π
−1(HQ) in the Chow ring of X ;

see, e.g., [12, Chapter 1] for more information on Chow rings and how they
are used. Furthermore, we denote by E the class of π−1(V ) = E ⊆ X , called
exceptional divisor, away from which the blowing down map is an isomorphism
of algebraic varieties.

Recall that we want to count the number of conics that fulfill some inter-
section conditions. This corresponds to counting the number of points in an
algebraic set of dimension zero that is defined by the intersection of H̃p, H̃ℓ and
H̃Q in X . The classes H̃p, H̃ℓ, H̃Q do not intersect in the exceptional divisor E;
see, e.g., [16, p. 749-56]. This means that they meet transversely away from the
subvariety of singular conics and have no common points in E. Thus any inter-
section problem involving conics, that contain a general point, or are tangent to
a general line or a general conic, can be computed by taking the degree of the
product of the corresponding classes in the Chow ring.

Let now C ⊆ P2
C be a circle. We can describe C a circle with center [s : t : r]

and radius r as the vanishing locus of the equation (x− sz)2 +(y− tz)2 − r2z2 ∈
C[x,y,z]. Note that C passes through the circular points

◦+ := [1 : i : 0] and ◦− := [1 : −i : 0] (2.3)

and conversely that any conic passing through ◦+,◦− is in fact a circle. Circles,
then, are conics that pass through the circular points ◦+,◦−. We wish to enumer-
ate the number of circles mutually tangent to three conics. By the above, these
are precisely the conics mutually tangent to three general conics that also pass
through the two circular points. The number of circles tangent to three general
conics are thus given by the intersection product H̃Q

3
· H̃◦+ · H̃◦− .
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Emiris and Tzoumas [13] used this observation and computed the upper
bound H̃Q

3
· H̃p

2
= 184, where p is a general point in the sense of intersection

theory (see also the survey article by Kleiman and Thorup [23]). A priori, it is
not clear that taking p to be the circular points ◦+ or ◦− is general in the sense
of intersection theory. Therefore, for completeness we give the full proof of the
fact that the answer to Question 1.1 is 184.

Proposition 2.1. Given three general conics Q1,Q2,Q3 ⊆ C2, there are 184
circles tangent to these three conics.

Proof. We wish to compute H̃Q
3
· H̃◦+ · H̃◦− . We know that conics degenerate

into flags, so the condition of being tangent to a conic Q is equivalent to the
condition that it contains either of two points or is tangent to either of two lines.
This gives us the equality H̃Q = 2H̃p +2H̃ℓ; see also [16, p. 775].

We now seek to verify that H̃p = H̃◦+ , H̃◦− . To show this, it suffices to show
that the 4-planes in P5

C defined by conics passing through either of ◦+,◦− do not
contain the Veronese V or, equivalently, that the equation defining the 4-plane
vanishes to order zero on V ; see [11, p. 105]. But since the hypersurfaces H◦+
and H◦− do not contain the Veronese, we know that are H̃◦− = H̃p +0 ·E = H̃p

and, similarly, H̃◦+ = H̃p. Namely the circular points ◦+ and ◦− are general in
the sense of intersection theory.

Using the two facts above, we can enumerate the number of circles tangent
to three general conics as the number of conics tangent to three general conics
and passing through two general points. This gives us

(2H̃p +2H̃ℓ)
3 · H̃◦+ · H̃◦− = (2H̃p +2H̃ℓ)

3 · H̃p
2

= 8 · H̃p
5
+24 · H̃p

4
· H̃ℓ+24 · H̃p

3
· H̃ℓ

2
+8 · H̃p

2
· H̃ℓ

3
.

Over P2
C there is one conic through 5 general points H̃p

5
= 1, two conics through

four general points and tangent to one general line H̃p
4
· H̃ℓ = 2, four conics

through three general points and tangent to two general lines H̃p
3
· H̃ℓ

2
= 4,

and four conics through two general points and tangent to three general lines
H̃p

2
· H̃ℓ

3
= 4; see [12, p. 307]. Making the appropriate substitutions yields

8 ·1+24 ·2+24 ·4+8 ·4 = 184

which gives the claim.

2.2. Real circles tangent to three conics

We now turn our attention to understanding to Question 1.2.
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Figure 2: A red circle tangent to three blue lines that form a triangle. The proof of Theorem 2.2
considers such a triangle and finds a nearby arrangement of three hyperbolas, such that there are
136 real circles tangent to the three hyperbolas. In fact, the arrangement of hyperbolas in the
proof of Theorem 1.3 is near the triangle shown in the picture.

In the real version of Steiner’s problem of finding the maximum number of
real conics tangent to 5 general conics [20], the authors show that in a neighbor-
hood of the corresponding real discriminant where all five conics are singular,
there is an open cell where the number of real solutions achieves the complex
upper bound. Using this same idea, we show that in our case this neighbor-
hood produces at most 136 real solutions. Notice that the following theorem, in
particular, proves Theorem 2.2.

Theorem 2.2. Let Q1,Q2,Q3 be three real conics in the plane such that Q1,Q2
and Q3 are all singular. There are at most 136 real circles tangent to three conics
in a neighborhood of Q1,Q2,Q3.

Proof. We adapt the argument of [20] as presented in [22, Ch. 7] of deforming
a special configuration of conics. Suppose ℓ1, ℓ2, ℓ3 are lines supporting the
edges of a triangle and pi ∈ ℓi for 1 ≤ i ≤ 3 are points in the interior of the
corresponding edge.

We consider a subset of lines S ⊆ {ℓ1, ℓ2, ℓ3} and a subset PS ⊆ {p1, p2, p3}
of the points, such that for all pi ∈ PS, ℓi ̸∈ S. For every subset S ⊆ {ℓ1, ℓ2, ℓ3}



REAL CIRCLES TANGENT TO 3 CONICS 157

of the lines, there are

H̃◦+ · H̃◦− · H̃ℓ
|S|
· H̃p

3−|S|
= 2min{|S|−2, 3−|S|}+2

complex circles that are tangent to the lines in S and meet the 3−|S| points in
PS. Figure 2 shows an example of a circle that is tangent to three lines (i.e.,
|S|= 3).

Note, however, for |S|= 2, there are 4 = 22 complex but only 2 real circles
tangent to two lines and passing through a point [2]. Altogether, this gives

3

∑
k=0

2min{k−2, 3−k}+2
(

3
k

)
= 1 ·

(
3
0

)
+2 ·

(
3
1

)
+4 ·

(
3
2

)
+4 ·

(
3
3

)
= 23

complex circles, but only

1 ·
(

3
0

)
+2 ·

(
3
1

)
+2 ·

(
3
2

)
+4 ·

(
3
3

)
= 17

real circles that for each 1 ≤ i ≤ 3 either meet pi or are tangent to ℓi.
With an asymmetric configuration, exactly 17 of the real circles meet each

point pi and none of the 17 tangent to ℓi are tangent at the point pi. We now
replace each pair (pi, ℓi) with a smooth hyperbola hi that is asymptotically close
to it: a hyperbola whose branches are close to ℓi and flex points close to pi.
If we do this for a pair (pi, ℓi) then for every conic in our configuration there
will be two nearby circles tangent to hi – one at each branch of the hyperbola.
Replacing each pair (pi, ℓi) by hi for 1 ≤ i ≤ 3, we get 23 ·17 = 136 real circles,
proving our claim.

Theorem 2.2 implies Theorem 1.3. In the next section we give a constructive
proof of Theorem 1.3.

2.3. The real discriminant

As a step towards the resolution of Conjecture 1.4 we characterize the real dis-
criminant of the polynomial system (2.2), whose solutions describe circles tan-
gent to three conics.

The real discriminant ∆ ⊆ R18 of (2.2) is a hypersurface in the space of real
parameters where the parameters p = (a1, . . . ,a6,b1, . . . ,c6) ∈ ∆ if and only if
the number of real circles tangent to the three real conics defined by p is not lo-
cally constant. We call such real parameters and the corresponding arrangement
of conics degenerate. In other words, ∆ divides the parameter space R18 into
open cells in which the number of real solutions to (2.2) is constant.
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Theorem 2.3 (The real discriminant). Let {i, j,k}= {1,2,3}. An arrangement
of three real conics Q1,Q2,Q3 is degenerate, if and only if one of the following
holds:

1. There is a real line tangent to Q1,Q2,Q3.

2. Q1,Q2 and Q3 intersect in a real point.

3. Qi is singular at a real point (ui,vi), and there is a real circle tangent to
Q j,Qk that passes through (ui,vi).

4. Qi and Q j meet tangentially in a real point.

5. There exists a real circle C that is tangent to Q1,Q2,Q3 at the real points
(u1,v1),(u2,v2),(u3,v3), respectively, and the curvature of C equals the
curvature of Qi at (ui,vi) and the normal vectors ∇C(ui,vi) and ∇Q(ui,vi)
point in the same direction.

Proof. The discriminant consists of those real parameters p ∈ R18, where the
polynomial system F(x; p) = ( f1(x; p), . . . , f9(x; p)) from Equation (2.2) has

1. a real solution at infinity.

2. a real solution x ∈ R9, such that the Jacobian matrix

Jx = Jx(x; p) =
[

∂ f1(x;p)
∂x . . . ∂ f9(x;p)

∂x

]T
∈ R9×9

of F at x is singular.

Let us first consider when a real solution goes off to infinity. First note that
circles have only two points at infinity, namely [1 : ±i : 0]. These are non-real
points, so not limits of real solutions. Therefore, in order to have a real solution
go to infinity, we must have at least one of (a,b,r) go to infinity. If r goes to
infinity then it is a circle of infinite radius, which has curvature 0 so it is a line.
If r is bounded then the circle converges to either (x− a)2 = 0 or (y− b)2 = 0
or (x− a)2 +(y− b)2 = 0. In any of these cases it is either a line or a point at
infinity. Therefore, two real solutions go to infinity when there is a line tangent
to all three conics, which proves the statement.

The rest of the proof consists of showing that cases (2)–(5) correspond ex-
actly to those situation we the Jacobian matrix is singular.

If r = 0, the three conics Q1,Q2 and Q3 must intersect in a point (u,v) and
we have the circle (x−u)2+(y−v)2 = 0 tangent to all three conics, which gives
a singular solution to the system (2.2). This is the second item above. Therefore,
in the following we assume that r ̸= 0.
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The polynomial system in (2.2) consists of three triplets of polynomials,
namely:

ψi(ui,vi,a,b,r) :=

 C(ui,vi)
Qi(ui,vi)

∇C(ui,vi)∧∇Qi(ui,vi)

 ∈ R3 for i = 1,2,3.

Let J(i)x denote the Jacobian matrix of ψi at x. Then,

Jx =

J(1)x

J(2)x

J(3)x

=

A(1) 0 0 B(1)

0 A(2) 0 B(2)

0 0 A(3) B(3),

 (2.4)

where A(i) ∈ R3×2 contains the partial derivatives of ψi with respect to (ui,vi),
and B(i) ∈ R3×3 contains the partial derivatives of ψi with respect to a,b,r.

We have ∇C(x,y) = 2(x−a,y−b)T and so

∂∇C(ui,vi)

∂a
=

(
−2
0

)
,

∂∇C(ui,vi)

∂b
=

(
0
−2

)
,

∂∇C(ui,vi)

∂ r
=

(
0
0

)
.

This shows that for (u̇i, v̇i, ȧ, ḃ, ṙ)T ∈ R5 we have

J(i)x


u̇i

v̇i

ȧ
ḃ
ṙ

= A(i)
(

u̇i

v̇i

)
+B(i)

ȧ
ḃ
ṙ

 (2.5)

=


2
(

u̇i

v̇i

)T

∇C(ui,vi)+Ċ(ui,vi)

2
(

u̇i

v̇i

)T

∇Q(ui,vi)

2
(

u̇i − ȧ
v̇i − ḃ

)
∧∇Qi(ui,vi)+∇C(ui,vi)∧H(Qi)

(
u̇i

v̇i

)
,


where Ċ(x,y) =−2(x−a)ȧ−2(y−b)ḃ−2rṙ and

H(Qi) =

 ∂ 2Qi
∂ 2ui

∂ 2Qi
∂ui∂vi

∂ 2Qi
∂ui∂vi

∂ 2Qi
∂ 2vi


is the Hessian of Qi at (ui,vi). Notice that Ċ(x,y) is an affine linear function.



160 P. BREIDING - J. LINDBERG - W. J. G. ONG - L. SOMMER

We have to show that the cases (3)–(5) above give exactly those situations,
where we can find a nonzero vector (u̇i, v̇i, ȧ, ḃ, ṙ)T ∈ R5 such that the vector in
(2.5) is equal to 0 for each i = 1,2,3. Since each of the equations is homoge-
neous in ui,vi, we can assume that

u2
1 + v2

1 = u2
2 + v2

2 = u2
3 + v2

3 = 1. (2.6)

If Qi is singular, we have a point (ui,vi) with Qi(ui,vi) = 0 and ∇Qi(ui,vi) =
0. The point (ui,vi) is part of a solution F(u1, . . . ,v3,a,b,r) = 0, if and only if
there is a circle that is tangent to the other two conics Q j and Qk at (u j,v j) and
(uk,vk), respectively, and that passes through (ui,vi). For this data

Jx (u̇i, v̇i, ȧ, ḃ, ṙ)T = 0

becomes a system of 8 linear equations in 9 variables. This always has a non-
trivial solution.

Next, since C is tangent to Qi at (ui,vi), we have ∇C(ui,vi)∧∇Qi(ui,vi) = 0;
i.e, ∇C(ui,vi) is a multiple of ∇Q(ui,vi) ̸= 0. The second entry in (2.5) then
implies (

u̇i

v̇i

)T

∇C(ui,vi) = 0,

so that Ċ(ui,vi) = 0 by the first entry. Unless Ċ = 0, this implies that the three
points (u1,v1),(u2,v2),(u3,v3) lie on a line. Since they also lie on the circle of
positive radius r > 0, this implies (ui,vi) = (u j,v j) for at least one pair i ̸= j.
But then Qi and Q j intersect tangentially at (ui,vi). In this case, in (2.4) we get
A(i) = A( j) and B(i) = B( j), which gives a singular Jacobian Jx. This shows that
item 4 above gives singular solutions.

So, outside the discriminant we must have Ċ = 0; i.e., ȧ = ḃ = ṙ = 0.
Since ψi does not depend on (u j,v j) for j ̸= i, this means in order to under-
stand when Jx is singular, it is now enough to study when the equations in (2.5)
vanish. For Ċ = 0 the third equation in (2.5) becomes

2
(

u̇i

v̇i

)
∧∇Qi(ui,vi)−H(Qi)

(
u̇i

v̇i

)
∧∇C(ui,vi) = 0. (2.7)

We have (∇C(ui,vi))
T ∇C(ui,vi) = 4r2 > 0 and (∇Q(ui,vi))

T ∇Q(ui,vi) > 0,
since Qi is smooth. Then, multiplying (2.7) by 2r

√
(∇Q(ui,vi))T ∇Q(ui,vi) and

using (2.6) and the fact that(
u̇i

v̇i

)T

∇Q(ui,vi) =

(
u̇i

v̇i

)T

∇C(ui,vi) = 0
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we have
εi

r
=

(
u̇i

v̇i

)T H(Qi)√
(∇Q(ui,vi))T ∇Q(ui,vi)

(
u̇i

v̇i

)
,

where εi = 1, if ∇Q(ui,vi) and ∇Q(ui,vi) point into the same direction, and
εi = −1 otherwise. Since, r−1 is the curvature of C and the right hand side
equals the curvature of Qi at (ui,vi), this shows that we have a singular solution
also in the fifth item above. In all other cases, Jx has a trivial kernel, hence is
not singular.

3. Hill climbing

Theorem 2.2 shows that there exist three real conics that have 136 real circles
tangent to all three, but it does not provide an explicit construction of the three
conics. To find conics that exhibit this behavior, we rely on a numerical method
known as hill climbing. We adapt a method of Dietmaier in [10] to increase the
count of real solutions.2 For the ease of exposition, we outline our method below
using matrix inverses. In our implementation we do not invert any matrices and
instead we introduce auxiliary variables and solve an equivalent linear system,
allowing for more numerically stable computations.

The basic idea of the hill climbing algorithm is as follows. Suppose we are
given a set of parameters p = (a1, . . . ,a6,b1, . . . ,c6) ∈ R18 defining a configu-
ration of three general conics in the plane. By Proposition 2.1, the system of
polynomial equations F(x; p) = 0 from (2.2) has 184 complex solutions. To
increase the number of real solutions, we iteratively perturb p so that a com-
plex conjugate solution pair first becomes a double real root then perturb p once
again to separate this double root resulting in two distinct real roots. Simul-
taneously, we ensure that no existing real solution vectors become arbitrarily
close, forming a double root and eventually a complex conjugate pair and that
solutions do not diverge to infinity.

For fixed parameters p ∈ R18, denote S by

S = SR⊔SC ⊆ C9

the solutions of our system of polynomial equations (2.2) where SR is the set of
solutions with only real entries and SC = S\SR.

In the first step of the hill climbing algorithm, we select one solution x∗ ∈ SC
in which we aim to decrease the L1 norm ∥Im(x∗)∥1 of the vector of imaginary

2Dietmaier’s hill climbing algorithm was recently applied in [8] for generating instances of
points, lines, and surfaces in 3-space with a maximal number of real quadrics, that contain the
points and are tangent to the lines and surfaces.
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parts of x∗. The goal is to compute a step ∆p in the parameter space R18, such
that the magnitude of the imaginary part of x∗ decreases as we move from p to
p+∆p for some −ε1 ≤ ∆p ≤ ε1 where ε is a small tolerance parameter and
1= (1, . . . ,1)T ∈ R18 is the all-one vector.

As in the previous section we denote by Jx(x; p) ∈C9×9 the Jacobian matrix
of F(x; p) with respect to the variables x = (u1,v1, . . . ,s, t,r) evaluated at x with
parameters p. Similarly, Jp(x; p)∈C9×18 is the Jacobian of F(x; p) with respect
to the parameters p = (a1, . . . ,a6,b1, . . . ,b6) evaluated at x with parameters p.
Following [10] we observe that differentiating both sides of F(x; p) = 0 with
respect to p and x, gives the following matrix equation involving the step ∆p:

Jx(x; p)∆x+ Jp(x; p)∆p = 0. (3.1)

Solving (3.1) for ∆x, we have that

Im(∆x) =−Im(Jx(x; p)−1 · Jp(x; p)) ·∆p, (3.2)

where Im(·) denotes taking the componentwise imaginary part. Let sign(·) de-
note the componentwise sign function. In order to decrease ∥∆Im(x∗)∥1, we
wish to minimize

−sign(Im(x∗))T · Im(Jx(x∗; p)−1 · Jp(x∗; p)) ·∆p.

Notice that this objective function considers a first order approximation of our
system F(x, p) at (x∗, p), so we add the constraint −ε1 ≤ ∆p ≤ ε1 to ensure
that this approximation is accurate enough.

Next, we want to ensure that as we take a step in the parameter space, two
existing real solutions do not come together to become non-real. Consider two
real solutions xi,x j ∈ SR. The distance between xi,x j is the L2 norm D = ∥xi −
x j∥2

2. Differentiating D with respect to x yields

2 · ⟨xi − x j,∆xi −∆x j⟩.

Substituting (3.2) in for ∆xi,∆x j, we have an expression that gives the change
in the distance between two real solutions xi,x j as a function of the change in
parameters. Since we do not want this distance to decrease, we impose the
constraint

∀xi,x j ∈ SR : (xi −x j)
T ·

(
Jx(xi; p)−1 ·Jp(xi; p)−Jx(x j; p)−1 ·Jp(x j; p)

)
·∆p ≥ 0.

Finally, we want to ensure that a complex solution does not go off to infinity
as we take a step in the direction ∆p. To enforce this constraint, we consider
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the magnitude of every complex solution xi ∈ SC and impose that the magnitude
does not increase. Define the following 18×18 block matrices

J̃x(x; p) =
[

Re(Jx(x; p)) 0
0 Im(Jx(x; p))

]
∈ R18×18,

J̃p(x; p) =
[

Re(Jp(x; p))
Im(Jp(x; p))

]
∈ R18×18

and consider the augmented vector

x̃i =

[
Re(xi)
Im(xi)

]
∈ R18.

The magnitude of xi is the same as ∥x̃i∥2
2. Again, we differentiate ∥x̃i∥2

2 and use
(3.2) (considering Re(xi) and Im(xi) as separate elements) to write

∀xi ∈ SC : ⟨x̃i · J̃x(xi; p)−1 · J̃p(xi; p),∆p⟩ ≥ 0.

This constraint ensures that the change in the magnitude of xi does not increase.
In summary, in the first step of our hill climbing algorithm we consider the

linear program:

min
∆p

−sign(Im(x∗))T · Im(Jx(x∗; p)−1 · Jp(x∗; p)) ·∆p (Opt-C)

subject to − ε ·1≤ ∆p ≤ ε ·1

∀ xi,x j ∈ SR : (xi − x j)
T ·

(
Jx(xi; p)−1 · Jp(xi; p)− Jx(x j; p)−1 · Jp(x j; p)

)
·∆p ≥ 0

∀xi ∈ SC : ⟨x̃i · J̃x(xi; p)−1 · J̃p(xi; p),∆p⟩ ≥ 0.

So long as ε is sufficiently small so that the first order approximation of F(x; p)
is accurate, an optimal solution to Opt-C, ∆p∗, gives a step in the parameter
space in which the magnitude of the imaginary part of x∗ decreases.

Algorithm 1 repeatedly solves (Opt-C) and updates x∗ until ∥Im(x∗)∥1 is
sufficiently small. At this point, x∗ is close to being a singular real root.

Given an (almost) singular real root, x∗ satisfying F(x∗; p) = 0, we separate
it into two real roots by first setting the imaginary part of x∗ equal to zero and
then adding a small quantity δ ∈ R9 component-wise yielding

x′1 = x∗+δ , x′2 = x∗−δ ∈ R9.

We then find conics p̂ ∈ R18 close to p that contain x′1,x
′
2 as points of tangency

by solving the following optimization problem:
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Algorithm 1: Minimize imaginary norm

Input: Parameters p ∈ R18 and a non-real solution x∗ ∈ C9 such that
F(x; p) = 0 where F is as defined in (2.2) and a tolerance ε > 0

Output: Parameters p′ ∈ R18 and a non-real solution x′ ∈ C9 such that
F(x′, p′) = 0 where F is as defined in (2.2) and ∥Im(x′)∥2 ≤ ε

1 while ∥Im(x∗)∥2 > ε do
2 Solve the optimization problem (Opt-C) for ∆p∗

3 Set p′ = p+∆p∗

4 Using parameter continuation, compute
S = {x′ ∈ C9 | F(p′,x′) = 0}

5 Set x∗ := argminx∈S{∥x− x∗∥2}
6 Return p′,x′ := x∗

arg min
p̂∈R18

∥p̂− p∥2 (Opt-p)

subject to f1(x′1; p̂) = f1(x′2; p̂) = 0
f2(x′1; p̂) = f2(x′2; p̂) = 0
f3(x′1; p̂) = f3(x′2; p̂) = 0
f7(x′1; p̂) = f7(x′2; p̂) = 0
f8(x′1; p̂) = f8(x′2; p̂) = 0
f9(x′1; p̂) = f9(x′2; p̂) = 0

Observe that now that F(x′1; p) ̸= 0 and F(x′2; p) ̸= 0, because we did not use
f4, f5, f6 for the constraints. In fact, it may not be possible to find a parameter
p̂ such that F(x′1, p̂) = F(x′2, p̂) = 0. For instance, if x′1 = (u1, . . . ,v3,a,b,r),
then there is no reason to expect that (ui,vi) are on the circle defined by a,b,r.
Nevertheless, computing p̂ in in (Opt-p) we find conics close to our original
conics. We use parameter homotopy continuation (see, e.g., [21, Section 7]) to
find all x such that F(x; p̂) = 0 and select x1,x2 closest to x′1,x

′
2.

While x1 and x2 are two distinct real roots, they are still close together,
meaning they are close to being a complex conjugate pair. Therefore we would
like to separate them so that they are further apart.

Recall, that we can express the change in distance between two real solu-
tions, x1,x2 as a function of the change in parameters ∆p by

(x1 − x2)
T ·

(
Jx(x1; p)−1 · Jp(x1; p)− Jx(x2; p)−1 · Jp(x2; p)

)
·∆p.

We would like to maximize this function still subject to the constraints above
that ∆p is constrained to a small neighborhood and that none of the other real
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solutions become too close and none of the other complex solutions become too
large. This is equivalent to solving:

max
∆p

(x1 − x2)
T ·

(
Jx(x1; p)−1 · Jp(x1; p)− Jx(x2; p)−1 · Jp(x2; p)

)
·∆p (Opt-R)

subject to − ε ·1≤ ∆p ≤ ε ·1

∀ xi,x j ∈ SR : (xi − x j)
T ·

(
Jx(xi; p)−1 · Jp(xi; p)− Jx(x j; p)−1 · Jp(x j; p)

)
·∆p ≥ 0

∀xi ∈ SC : ⟨x̃i · J̃x(xi; p)−1 · J̃p(xi; p),∆p⟩ ≥ 0

Combining these three optimization problems defines our hill climbing al-
gorithm. It successively finds parameter values with higher numbers of real
roots. We first repeatedly solve Opt-C to make the imaginary part of a given
root sufficiently small resulting in a singular real root. We then use Opt-p to
find a set of parameters that matches a small perturbation of our singular root,
before applying Opt-R to separate them as real roots. This procedure is outlined
in Algorithm 2.

Algorithm 2: Hill climbing

Input: Parameters p ∈ R18 and real and complex solutions SC and SR
such that for all x ∈ SC and x ∈ SR, F(p,x) = 0 and a tolerance ε

Output: Parameters p′ ∈ R18 where the number of non-real solutions
to F(p′,x) = 0 is strictly less than |SC|

1 Select x∗ ∈ SC and run Algorithm 1 to output p′,x′

2 Solve (Opt-p) to obtain output p̂
3 Solve (Opt-R)
4 Return p′

We implement Algorithm 2 in Julia and provide the necessary code and
documentation on our MathRepo page

We can now explain how we prove Theorem 1.3.

Proof of Theorem 1.3. We first generate a parameter q ∈ R18 that defines a tri-
angle (three degenerate conics) as in the proof of Theorem 2.2. We know from
the proof that in the neighborhood of q there must be a parameter with 136 real
circles. So, we add a small random perturbation to q and obtain a parameter p.
This parameter is then used as the starting point for the hill climbing algorithm
Algorithm 2. Eventually, we get the following three conics:
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Q1 =

(
400141104595769

2302676434480590430

)
x2 +

(
5537854491843451

2305843009213693952

)
xy+

(
2379998783885947

288230376151711744

)
y2

−
(

5883336424977557
288230376151711744

)
x−

(
5057485722682341

36028797018963968

)
y+

(
2686777020175459
4503599627370496

)

Q2 =

(
2326975324861901

144115188075855872

)
x2 −

(
7017759077361941

576460752303423488

)
xy+

(
5286233514864229

2305843009213693952

)
y2

+

(
3536130883475143
18014398509481984

)
x−

(
5331739727004679
72057594037927936

)
y+

(
5373554039379455
9007199254740992

)

Q3 =

(
6288284117996449

576460752303423488

)
x2 −

(
8069853070614251

288230376151711744

)
xy+

(
1293970525023733

72057594037927936

)
y2

−
(

1453444402131837
9007199254740992

)
x+

(
7458321785480773
36028797018963968

)
y+

(
2686777019781135
4503599627370496

)

Using the software HomotopyContinuation.jl [7] we solve the system
of polynomial equations Equation (2.2) and get 136 real solutions (in floating
point arithmetic). These 136 numerical solutions are then certified by interval
arithmetic [5, 7]. This gives a proof that the three conics above have indeed 136
tritangent real circles.

A Julia file for certification of the above polynomial system is available
on our MathRepo page. While Algorithm 2 never found an instance of conics
with more than 136 tritangent real circles and Theorem 2.2 shows that similar
arguments in [20] cannot be used to show that there exist three conics with 184
tritangent real circles, it does not exclude the possibility that such conics do
exist. That being said, we conjecture that the maximum number of real circles
tangent to three general, real conics is 136 and we interpret Theorem 2.2 and
our numerical experiments running Algorithm 2 as strong evidence supporting
this conjecture.

With the help of Algorithm 2, we find 69 distinct parameters p0, . . . , p68 ∈
R18 such that the number of real circles corresponding to the conic arrangement
defined by pk is 2k. That is, for every even number 2k between 0 and 136 we find
a parameter that gives 2k real circles. Using certification by interval arithmetic
[5, 7] we then have a proof for the next theorem.

Theorem 3.1. Let 0 ≤ n ≤ 136 be an even number. Then, there exists a pa-
rameter p ∈ R18, which is outside the real discriminant, such that the conic
arrangement corresponding to p has exactly n real circles that are tangent to
these conics.

The data that proves this theorem can be found on our MathRepo page.
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Figure 3: We show the first 50 conic arrangements that were used to prove Theorem 3.1. The
number below each plot indicates the number of real tritangent circles. Starting from 92 real
circles the arrangement all look similar to a triangle as in Figure 2.
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4. Machine learning

In this section we investigate to what extent machine learning algorithms are
able to input a real parameter vector p ∈ R18 and predict the number of real
circles tangent to the three conics Q1,Q2,Q3 defined by p. We use a super-
vised learning framework. This means our data conists of points (p,n) ∈ R18 ×
{0,2,4, . . . ,184}, where n gives the number of real circles corresponding to p
(by Conjecture 1.4, we believe that {0,2,4, . . . ,136} suffices). In the language
of machine learning p is called the input data and n is called the label or output-
variable.

We first describe in the next section how we generate our data. Then, in Sec-
tion 4.2 we explain our machine learning model and in Section 4.3 we discuss
how well it performs.

4.1. Data generation and encoding

We consider two training data sets, D1 and D2. To generate D1, we first sam-
ple parameters, p ∈ R18 defining the three conics Q1,Q2,Q3 from a normal
N (018, I18) distribution where 018 ∈R18 is the all zeroes vector and I18 ∈R18×18

is the identity matrix. We compute the number of real zeros n using the soft-
ware HomotopyContinuation.jl [7], and then we perform the hill climbing
algorithm outlined in Algorithm 2. Hill climbing is necessary in order to have
samples with high numbers of real solutions. To generate D1, we execute Algo-
rithm 3 for M = 50,000.
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Algorithm 3: Generate D1

Input: A number M
Output: A data set D1 with |D1|= M

1 while |D1|< M do
2 Randomly select p ∈ R18 from a normal N (018, I18) distribution
3 Compute the number of real circles, n, tangent to conics Q1,Q2 and

Q3 whose coefficients are defined by p
4 Add (p,y) to D1
5 Run Algorithm 2 with input p to get output p′ and compute the

number of real circles, n′, tangent to conics Q′
1,Q

′
2,Q

′
3 defined by

p′

6 if n′ > n then
7 add (p′,n′) to D1 and repeat step 4 with input p′

8 else
9 Go back to Step 1

To generate the training set D2, we sample 50,000 data points indepen-
dently from a normal N (018, I18) distribution and find the number of real circles
tangent to the corresponding conics using the homotopy continuation software
HomotopyContinuation.jl.

The data sets D1,D2 are plotted in histograms in Figure 4. As one can
see the purely random data D2 has a large number of instances with no real
tritangent circles and concentrates around 20 real tritangent circles with fast
decay. In addition, D2 does not represent any arrangements of conics with more
than 60 real circles. By contrast the data D1 is much more representative of
arrangements with many real circles. This can be explained by the results in
[4, 9, 19] where the authors show that polynomials with Gaussian coefficients
tend to have a “simple” topology with high probability. In our case, [4, 9, 19]
imply that the probability of having many real circles is exponentially small.
This phenomenon can be seen in Figure 4.

4.2. The model

Since the number of real circles n tritangent to 3 conics is a discrete variable,
our problem is a classification problem – the data space for the output variable
consists of discrete points, called classes.

We found that turning our problem into a regression problem works better:
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Figure 4: Two histograms showing the distribution of the number of real circles tangent to a given
configuration of conics. The top histogram shows the distribution on the data D1 we generated
using the hill climbing algorithm and the bottom histogram shows the distribution on random
data D2.
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Instead of having a response variable in n ∈ N, we consider a statistical model

(p,y) ∈ R18 ×∆92,

where ∆92 = {y∈R93 | y1+ · · ·+y93 = 1,yi ≥ 0} is the 92-dimensional standard
simplex. The underlying idea is that y defines a discrete random variable where
yk := Prob(y = k) gives the probability that for given input parameters p ∈ R18,
the corresponding conics defined by p have 2k real tritangent circles. For all
parameters outside of the discriminant, there must be an even number of real
solutions, so we have 1+ 184

2 = 93 possibilities for the number of real zeros. The
data points from the previous subsection are then encoded as the vertices of the
simples; i.e., given a number of real circles n we associate to it the probability
distribution y, where Prob(y = 1

2 n) = 1. This process is sometimes called one
hot encoding. It turns categorical data into data which can be used for regression
problems.

The goal of our machine algorithm is then to learn a function

φ : R18 → ∆92.

such that φ(p) is a good predictor for the number of real circles corresponding
to p. Since φ(p) is a point in ∆92, we predict the number of real tritangent circles
to the three conics defined by p to be two times the maximum index of φ(p):

2 · argmax {φ(p)i−1 : 1 ≤ i ≤ 93} ∈ {0,2, . . . ,184}.

We model φ using a multilayer perceptron (MLP) [17]. A MLP is defined
as the composition φ = φ1 ◦ · · · ◦ φm of sub-functions φ0, . . . ,φm called layers,
where

φi(x) = σi(Wix+bi)

with matrices Wi ∈ Rmi×mi+1 , vectors bi ∈ Rmi , and a nonlinear activation func-
tion σi : Rmi → Rmi . The matrices Wi are called weights and the vectors bi are
called biases. In our model we use m = 2 layers, and do not impose any sparsity
constraint on the weights. That is, we use a fully connected model. Both layers
have 1,000 neurons each, which means that m1 = m2 = 1,000. As the nonlinear
activation function we use the coordinate-wise ReLU function

σi((x1, . . . ,xm)) = (max{0,x1}, . . . ,max{0,xm}), i = 1,2.

The activation function for the output is the softmax function

σ0((x1, . . . ,xm)) =
1

∑
m
i=1 exp(xi)

(exp(x1), . . . ,exp(xm)).
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We choose the categorical cross entropy loss function

L(y, ŷ) =−
92

∑
k=0

yk · log(ŷk),

where ŷk is the probability that there are 2k real solutions. In the process of
training, the weights and biases are sequentially adjusted so that the loss func-
tion is minimized. To find the optimal weights and biases, we use stochastic
gradient-based optimization. Backpropagation calculates the gradient of the
cost function with respect to the given weights [15]. Our optimizitaion algo-
rithm is Adam [18]. Adam requires only first order gradients and computes indi-
vidual adaptive learning rates. We use a batch size of 64.

We developed the model architecture during the data exploration phase. We
tried several different architectures where we varied the number of layers, the
number of neurons in each layer, and the activation functions. We found that net-
works with more than two hidden layers or fewer neurons had slower learning
progress and resulted in worse accuracy on the validation set than our proposed
model.

4.3. Evaluation

We implemented the model outlined in Section 4.2 using TensorFlow [1] with
data sets D1,D2. We used an 80/20 training-test-split and consider training our
model in three ways: (1) using training data D1, (2) using training data D2 and
(3) using training data D1 ∪D2. Table 1 documents our results.

The values on the diagonal entries of Table 1 are the validation results from
training. All other results are computed on the whole set. We found that the
accuracy on set D1 is very low, when training only on set D2 and vice versa
which is not surprising considering how different the underlying distributions
of D1 and D2 are. In addition, the purely random data from data set D2 is much
harder to learn than D1. The model achieves validation accuracy of 97.47%
on D1 against a validation accuracy of only 47.33% on D2. This means that
when using D2 as training data, the model is over-fitting and learning random
features from the data. There are many techniques to prevent this [15] that can
be explored in future work. Nevertheless, training on D1 works exceptionally
well, even without any special techniques.

It is reasonable to expect that D1 is easier to predict than D2, because the
data set D1 represents a wider range of the behavior of the parameter space.
Nevertheless, as D1 only contains parameters with up to 90 real tritangent cir-
cles, it does not capture the whole picture. We believe that the good performance
of D1 is implied by the structure of the real discriminant from Theorem 2.3.



REAL CIRCLES TANGENT TO 3 CONICS 173

Training Data Accuracy on D1 Accuracy on D2 Accuracy on D1 ∪D2

D1 95.59% 3.68% 49.88%
D2 3.53% 47.33% 45.69%

D1 ∪D2 90.76% 38.56% 60.20%

Table 1: The empirical results with the three different training sets

Learning the discriminant was approached in [3]. It would be interesting to
understand to what extent the real discriminant can be learned from D1.
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